0 Daumen
389 Aufrufe

Ich habe folgende Aufgabe gegeben:

K(x,y,z) = 2x^2 + y^2 - 2xz + 3z , 1. NB:  x-y+z = 2 , 2. NB: x+y-z = 4. Ich soll diese minimieren.

meine Lagrangefunktion lautet dann:

L(x,y,z,λ,τ) = 2x^2 + y^2 - 2xz + 3z + λ(2-x+y-z) + τ ( 4-x-y+z)

Lx = 4x-2z-λ-τ=0 (1)

Ly= 2y + λ -τ = 0 (2)

Lz = -2x+3-λ+τ=0 (3)

Lλ=2-x+y-z=0 (4)

Lτ=4-x-y+z=0 (5)

Wie löse ich das jetzt weiter. Ich habe mal (3) + (2) gemacht und erhalte dann y= -(3/2)+x. Wie soll ich am besten weitermachen?

von

1 Antwort

0 Daumen
von 85 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community