0 Daumen
464 Aufrufe

Aufgabe:


Der Verlauf der Flugbahn einer Kugel beim Kugelstoßen wird näherungsweise durch die Funktion h mit h(x)=-0,08*x^2+0,5*x+1,7


e) Berechnen Sie, in welcher horizontalen Entfernung vom Abwurfpunkt die Kugel auf dem Boden aufschlägt

f) Berechnen Sie den Winkel, mit dem die kugel auf dem Boden trifft

von

3 Antworten

+1 Daumen

Hallo,

$$f(x)=-0,08x^2+0,5x+1,7\\ f'(x)=-0,16x+0,5\\$$

$$-0,08x^2+0,5y+1,7=0\qquad |:(-0,08)\\ x^2-\frac{25}{4}x-\frac{85}{4}=0\\ x_{1,2}=\frac{25}{8}\pm \sqrt{(\frac{25}{8})^2+\frac{85}{4}}\\ x_1=3,125+5,569=8,694\\x_2=3,125-5,569=-2,444\\$$

$$\tan α=f'(8,694)=-0,89\\ \tan^{-1}(-0,89)=-41,7°$$

Gruß, Silvia

Kugelstoß.JPG

von 34 k

Wie komme ich auf die 25/4 und die 85/4? Kann man das nicht einfacher auch berechnen

Ja, du kannst natürlich auch mit Dezimalzahlen statt mit Brüchen arbeiten.

Also $$ x^2-6,25x-21,15=0$$

Vielen Dank:)

sehr  gerne!

$$ \frac{0.50}{0.08}=\frac{50}{8}= \frac{25}{4}$$

$$ \frac{1.70}{0.08}=\frac{170}{8}= \frac{85}{4}$$


0 Daumen

e)

h(x) = 0 --> x = 8.694 m

f)

arctan(h'(8.694)) = -41.70° [Das minus zeigt dabei nur an das die Kugel fallend auftritt.]

von 440 k 🚀

Wie meinst du das mit e wie kommst du auf dieses Ergebnis

Bei f wenn ich h'(8.694)=-0.16*8.694+0,5= bekomme ich das falsche ergebnis raus

0 Daumen

Hallo

a) h(x)=0 daraus xw

b) h'(xw) berechnen, davon arctan nehmen.

Gruß lul

von 89 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community