0 Daumen
100 Aufrufe

Aufgabe:

Die Bewegung eines Stabhochspringers über die Hochsprunglatte kann vereinfacht durch die Funktion h mit h(t)= -4t^2+9,7t (h= Höhe in m, t= Zeit in s)

a) wie lange dauert der Sprung

b) Welche maximale Höhe kann dieser Stabhochspringer überqueren?

c) Ermitteln sie die Geschwindigkeit des Springers nach 1,5 s.

Problem/Ansatz:

Ich habe wirklich keine richtige Ahnung was ich berechnen soll, bei c) kann ich mir nur vorstellen das man 1,5 in die Funktion einsetzt.

von

1 Antwort

0 Daumen

f(t) = - 4·t^2 + 9.7·t

a)

f(t) = 0 --> t = 0 ∨ t = 2.425 → Der Sprung dauert ca. 2.4 s

b)

f(2.425/2) = 5.881 → ca. 5.88 m

c)

f'(t) = - 8·t + 9.7
f'(1.5) = -2.3 → Die Vertikalgeschwindigkeit beträgt ca. 2.3 m/s

von 321 k 🚀

Was genau hast du jetzt gemacht um auf diese Werte zu kommen?

f(t) = 0

Die Funktion bzw. den Funktionsterm gleich 0 gesetzt und nach t aufgelöst.

f(2.425/2)

Den Mittelwert der beiden Nullstellen in die Funktion eingesetzt und ausgerechnet

f'(t) = - 8·t + 9.7
f'(1.5)

Die Ableitung gebildet und dort 1.5 eingesetzt und ausgerechnet.

Super, danke! :)

In der halben Oberstufe ab Klasse 10 des Gymnasiums geht das um die Untersuchung von Funktionen. Dazu gehört wichtig immer das Aufstellen und lösen von Gleichungen.

Photomath ist ein recht hilfreiches Tool was das Umformen bzw. Lösen von Gleichungen angeht. Meiner Meinung nach ist es Hilfreich in der Oberstufe.

Wenn ich bei Aufgabe b) den Mittelwert 2,425 in die Funktion eingebe kommt bei mir 0 raus :(

Du sollst auch nicht 2.425 einsetzen sondern 2.425/2. Also die Hälfte davon.

Ach so, vielen Dank!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community