f(x)=axnf′(x)=n∗axn−1f(x)=g(x)+h(x)f′(x)=g′(x)+h′(x)
a)
f(x)=0,5x2,x₀=1f′(x)=h→0lim0,5∗h(x+h)2−h2)=h→0lim0,5∗h2xh+h2=h→0lim0,5∗(2x+h)=xf′(1)=1
b)
f(x)=4x,x₀=2
f′(x)=4
f′(2)=4
c)
f(x)=4−x2,x₀=2
f′(x)=h→0limh4−(x+h)2−(4−x2)=
f′(x)=h→0limh−2xh−h2=
f′(x)=h→0lim−2x−h=−2x
f′(2)=−4