Hallo,
f′(x)=h→0limhf(x+h)−f(x)
Hier
f′(x)=h→0limhf(x+h)−f(x)f′(2)=h→0limhf(2+h)−f(2)f′(2)=h→0limh−2(2+h)2+25(2+h)−1−(−2⋅22+25⋅2−1)f′(2)=h→0limh−2(4+4h+h2)+50+25h−1−41f′(2)=h→0limh−8−8h−2h2+50+25h−42f′(2)=h→0limh17h−2h2f′(2)=h→0limhh⋅(17−2h)f′(2)=h→0lim17−2hf′(2)=17
Gruß, Silvia