0 Daumen
633 Aufrufe

ein seil ist in den punkten p=(23,76) p=(-2 \mid 3,76) und q=(23,76) q=(2 \mid 3,76) befestigt (maße in m). das seil hängt so durch, dass sein tiefster punkt 1 m 1 \mathrm{~m} über dem boden ist. es sei h die funktion, die jeder stelle x[2;2] x \in[-2 ; 2] die höhe h(x) h(x) des seils über dem boden zuordnet (maße in m).

die funktion h kann näherungsweise durch eine funktion hˉ \bar{h} der \operatorname{der} form hˉ(x)=ax2+c \bar{h}(x)=a x^{2}+c mit a,cr a, c \in \mathbb{r}^{*} ersetzt werden. Ermittle a und c und gib eine Termdarstellung an

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Setze in h \overline{h} (x)=ax2+c die Punkte (2|3,76) und (0|1). Löse das so entstandene System von zwei Gleichungen mit den Unbekannten a und c.

Avatar von 124 k 🚀

Wie setze ich die Punkte ein?

3,76=a·22+c

1=a·0+c

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

1 Antwort
Gefragt 30 Mai 2015 von Gast
0 Antworten
2 Antworten
Gefragt 4 Feb 2020 von Xyzxyz