0 Daumen
823 Aufrufe

Aufgabe:

Berechne den Inhalt der Fläche die vom Graphen der Funktion f und der Geraden g begrenzt wird!

f(x)=x4/4-8x2

g ist die Tangente im Punkt (0/f(0))



Problem/Ansatz:

Ich habe zuerst um die Nullstelle zu berechnen x2=u eingesetzt und ich bekomme -32 und das stimmt irgendwie nicht.

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

f(x) = 0.25·x4 - 8·x2

g(x) ist natürlich die x-Achse.

Nullstellen von f(x)

f(x) = 0.25·x2·(x2 - 32) = 0 --> x = ± √32 sowie x = 0 als Berührstelle

Fläche (Nutze dazu evtl. die Symmetrie)

A = 2·∫ (0 bis √32) f(x) dx = -386.2

Die Fläche beträgt damit 386.2 FE und befindet sich unter der x-Achse.

Avatar von 493 k 🚀

Darf ich dir noch eine Frage stellen ? Wie macht man das mit zwei Punkten P(-2/f(2)) und Q (4/f(4)) die Gleichung f(x)=1/4x2+1.

Du rechnest natürlich erstmal die Punkte aus:

f(-2) = 2

f(4) = 5

Dann die gerade durch die Punkte aufstellen

g(x) = (5 - 2)/(4 - (-2))·(x + 2) + 2 = 1/2·x + 3

Dann die Fläche zwischen zwei Funktionsgraphen berechnen.

Ich komme dabei auf eine Fläche von 9 FE.

woher kommt (x+2)+2 ?

woher kommt (x+2)+2 ?

Ich benutze die Punkt-Steigungsform einer linearen Funktion, Das musst du natürlich nicht genauso machen. Es gibt ja immer mehrere Wege

Lineare Funktion in der Punkt-Steigungsform mit der Steigung m durch den Punkt P(Px | P y)

g(x) = m·(x - Px) + Py

ich bekomme bei der Geradengleichung g(x)=1/3x+8/3

wie gehts dann weiter ist mein Weg auch richtig?

0 Daumen

Schnittpunkte von f und g bestimmen (bei x = \( \pm 4\sqrt{2} \))

Integrieren von g(x) - f(x) von x = \(-4\sqrt{2}\) bis x = \(4\sqrt{2}\) (ich komme auf 386,17...)

Fertig.

Avatar von 47 k
Schnittpunkte von f und g bestimmen


Ich würde hier aus einem naheliegenden Grund nur von gemeinsamen Punkten sprechen.

Ich meine die Schnittpunkte und ignoriere den dritten gemeinsamen Punkt.

blob.png

Ein anderes Problem?

Stell deine Frage