0 Daumen
434 Aufrufe

Aufgabe:


Problem/Ansatz: jemand eine Idee? Ich bedanke mich im voraus! Upload failed: [object Object]E0AD9D5C-159D-4AF7-B074-63A6F7ABDE15.jpeg

Text erkannt:

Seien \( m, n \in \mathbb{N} \) und \( \Omega \subset \mathbb{R}^{n} \) ein Gebiet, d.h. offen und zusammenhängend. Weiter sei \( f \in \mathrm{C}^{1}(\Omega, \mathbb{R}) \). Zeigen Sie, eine Funktion \( f: \Omega \rightarrow \mathbb{R} \) ist genau dann konstant auf \( \Omega \), wenn \( \nabla f(x)=0 \) für alle \( x \in \Omega \).
Hier bezeichnet \( x \cdot y:=\langle x, y\rangle \) das Standardskalarprodukt.

Avatar von

Was heißt bei Euch "zusammen hängend" "Wegzusammenhängend"?

1 Antwort

0 Daumen
 
Beste Antwort

Hallo,

aus Zeitgründen kann ich erstmal nur eine Idee anbieten:

Sei \(\omega\in\Omega\). Da \(f\) stetig ist, ist \(f^{-1}(\{f(\omega)\})\) abgeschlossen und nichtleer. Zeige nun, dass \(f^{-1}(\{f(\omega)\})\) auch offen ist. Das sollte mit dem Mittelwertsatz ganz gut gehen. Dann ist schon \(f^{-1}(\{f(\omega)\})=\Omega\) da \(\Omega\) zusammenhängend ist (je nach eurer Definition von zusammenhängend muss man evt dafür einen Satz benutzen).

LG Dojima

Avatar von

Ein anderes Problem?

Stell deine Frage