0 Daumen
667 Aufrufe

Zu zeigen ist:
Wenn Vektoren a, b und c linear unabhängig sind, dann sind die Vektoren d, e und f mit der Zusammensetzung

d = 2a - 3b + c ∧ e = a + 2b - 3c ∧ f = -3a + b + 2c
linear abhängig.

Avatar von

1 Antwort

0 Daumen

x*d+y*e+z*f = 0

<=> x*( 2a - 3b + c )+y*(  a + 2b - 3c) + z*( -3a + b + 2c)= 0

<=> (2x+y-3z)*a   + (-3x+2y+z)b     + ( x -3y+2z)c = 0

Da a,b,c lin. abh. sind, gilt

2x+y-3z = 0   und  -3x+2y+z=0     und   x -3y+2z = 0

und hier gibt es Lösungen, bei denen nicht alle Var. gleich 0 sind.

Kannst du auch gleich am Anfang sehen, weil d+e+f=0 gilt,

also d= -e-f, somit ist einer eine Lin.komb. der anderen,

also sind sie lin. abh.

Avatar von 289 k 🚀

Vielen Dank für die schnelle Antwort!

Der zweite Ansatz ist sehr intuitiv, schade dass ich d+e+f = 0 gar nicht beachtet hatte

Bei schlechter zu überschauenden Zahlen empfiehlt

sich allerdings der erste Ansatz.

Ein anderes Problem?

Stell deine Frage