0 Daumen
771 Aufrufe

Hallo, bei der untenstehenden Aufgabe komme ich leider nicht weiter. Ich habe die Lösungen, kann diese aber nicht nachvollziehen. Ich bin dankbar für jede Hilfe!


Aufgabe:

Gegeben sind die Funktionen f und h mit den Gleichungen f(x)=(x−3)⋅ex,
h(x)=x-3.

Bestimmen Sie rechnerisch die beiden Schnittstellen der Graphen der Funktionen f und h .

Hier findet ihr die Lösung:

f(x)=h(x)(x3)ex=x3(x3)(ex1)=0x3=0ex1=0 f(x)=h(x) \Leftrightarrow(x-3) \cdot \mathrm{e}^{x}=x-3 \Leftrightarrow(x-3) \cdot\left(\mathrm{e}^{x}-1\right)=0 \Leftrightarrow x-3=0 \vee \mathrm{e}^{x}-1=0
x=3x=0 \Leftrightarrow x=3 \vee x=0


Vielen Dank!

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Gegeben sind die Funktionen f und h mit den Gleichungen f(x)=(x3)exf(x)=(x−3)⋅ e^{x} ,
h(x)=x3h(x)=x-3

(x3)ex=x3(x3)(x−3)⋅ e^{x}=x-3|-(x-3)

(x3)ex(x3)=0(x−3)⋅ e^{x}-(x-3)=0

Ausklammern von (x3)(x−3):

(x3)(ex1)=0(x−3)*( e^{x}-1)=0

Satz vom Nullprodukt:

1.) (x3)=0(x−3)=0

x=3x₁=3

2.) (ex1)=0( e^{x}-1)=0

ex=1 e^{x}=1

xlne=ln(1)x*lne=ln(1)      ln(e)=1ln(e)=1    ln(1)=0ln(1)=0

x=0x₂=0        e0=1 e^{0}=1 → eine Zahl hoch 0 ist immer 1

Unbenannt.JPG

Avatar von 42 k

Vielen Dank für die schnelle Antwort! Habe das Ausklammern von (x-3) nicht erkannt.

Ein anderes Problem?

Stell deine Frage