0 Daumen
946 Aufrufe

Aufgabe:

- der Graph ist achsenysmmetrisch

- Für unendlich kleine Werte (x → unendlich) sind die Funktionswerte unendlich klein

- Der Graph ist um den Faktor 2 gestreckt

- Der Graph verläuft durch den Punkt P(-2/-32)

Geben Sie einen passenden Funktionsterm an.


Problem/Ansatz:

- achsenysmmetrisch bedeutet doch erstmal, dass der exponent gerade sein muss

- unendlich klein bedeutet doch - unendlich also ein negativer Koeffizient

- um 2 gestreckt bedeutet, dass der Koeffizient gleich 2 ist

- (-2/-32) heißt doch, dass der x Wert -2 ist und der y-wert -32


Also ist die gleichung doch

-2x2-32


Wieso ist das denn jetzt falsch?

Avatar von

Die vierte Bedingung wird nicht erfüllt.

Also ist die gleichung doch

-2x2-32

Das ist keine Gleichung.

Wie geht das dann?

Eine Gleichung hat die Form

<linke Seite>  <Gleichheitszeichen>  <rechte Seite>

Du solltest auch noch den geforderten Funktionstyp nennen. Denn die Funktion y=28xy=-2|8x| erfüllt alle Bedingungen, aber ist wahrscheinlich nicht das, wonach du suchst, oder?

3 Antworten

0 Daumen

Zeichne mal deinen Funktionsterm und P graphisch auf...

Avatar von 47 k

Ich verstehe das nicht. Könnten Sie mir das bitte erklären?

Ich verstehe das nicht. Könnten Sie mir das bitte erklären?

Was verstehst Du nicht? "Graphisch aufzeichnen"?

so sieht es aus:

blob.png

0 Daumen

Für eine Potenzfunktion komme ich auf eine Funktionsgleichung von

f(x) = - 2·x4

für eine Parabel auf

f(x) = - 2·x2 - 24

Plotlux öffnen

f1(x) = -2x4f2(x) = -2x2-24P(-2|-32)P(2|-32)Zoom: x(-3…3) y(-35…5)


Avatar von 493 k 🚀
0 Daumen

Wenn du x=-2 in
-2x²-32

einsetzt, kommt nicht -32 raus, sondern

-2•(-32)²-32 = -2080

:-)

Avatar von 47 k

Ein anderes Problem?

Stell deine Frage