0 Daumen
377 Aufrufe

Aufgabe:

blob.png

Text erkannt:

Es sei n2 n \geq 2 . Wir betrachten die Funktion f : RnR,xmax{x1,,xn} f: \mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto \max \left\{x_{1}, \ldots, x_{n}\right\} und setzen zudem A : ={xRni,j{1,,n} A:=\left\{x \in \mathbb{R}^{n} \mid \exists i, j \in\{1, \ldots, n\}\right. mit ij i \neq j und f(x)=xi=xj} \left.f(x)=x_{i}=x_{j}\right\} .
(a) Zeigen Sie, dass f f in jedem xRn\A x \in \mathbb{R}^{n} \backslash A differenzierbar ist, und bestimmen Sie Df(x) D f(x) für diese x x .



Problem/Ansatz:

Ich habe es über die Defintion versucht aber irgendwie haut das nicht so hin. Würde mich über tipps freuen

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Hallo

sieh dir das erst mal für n=2 und 3 an, dann siehst du dass es große Gebiete gibt mit f=const, verallgemeinere auf n

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage