0 Daumen
528 Aufrufe

Hallo, kann mir jemand dieses LGS mit Erklärungen und Tipps lösen?

Ich habe schon mehrere Ansätze.

Bei einem Ansatz sind die Gleichungen II und III identisch und und Gleichung IV ist -4y=0. Ich wüsste jetzt gar nicht wie ich weitermachen sollte.

Bei 'nem anderen Ansatz ist die Gleichung IV eine Nullzeile und die Gleichung III ist 16z=22, was bedeuten würde, dass es ein Widerspruch ist, da ich z mit einer Konstanten c ersetzen müsste/könnte, was dann 16c=22 sein würde (Widerspruch).

Danke für eure Hilfe! :)

lgs

Gefragt von

2 Antworten

+1 Punkt
$$\left( { \begin{matrix} 2 & -2 & 2 \\ -4 & 6 & 4 \\ -3 & 4 & 1 \\ -1 & 1 & -1 \end{matrix} }|{ \begin{matrix} 10 \\ 2 \\ -4 \\ -5 \end{matrix} } \right)$$letzte Zeile * (-3) + vorletzte Zeile:$$\left( { \begin{matrix} 2 & -2 & 2 \\ -4 & 6 & 4 \\ -3 & 4 & 1 \\ 0 & 1 & 4 \end{matrix} }|{ \begin{matrix} 10 \\ 2 \\ -4 \\ 11 \end{matrix} } \right)$$Zeilenvertauschungen (vereinfacht das weitere Vorgehen): 3.Zeile->1.Zeile,1.Zeile->2.Zeile,2.Zeile->3.Zeile:$$\left( { \begin{matrix} -3 & 4 & 1 \\ 2 & -2 & 2 \\ -4 & 6 & 4 \\ 0 & 1 & 4 \end{matrix} }|{ \begin{matrix} -4 \\ 10 \\ 2 \\ 11 \end{matrix} } \right)$$3.Zeile + 2 * 2.Zeile$$\left( { \begin{matrix} -3 & 4 & 1 \\ 2 & -2 & 2 \\ 0 & 2 & 8 \\ 0 & 1 & 4 \end{matrix} }|{ \begin{matrix} -4 \\ 10 \\ 22 \\ 11 \end{matrix} } \right)$$2 * 4.Zeile -3.Zeile$$\left( { \begin{matrix} -3 & 4 & 1 \\ 2 & -2 & 2 \\ 0 & 2 & 8 \\ 0 & 0 & 0 \end{matrix} }|{ \begin{matrix} -4 \\ 10 \\ 22 \\ 0 \end{matrix} } \right)$$4.Zeile entfällt, 3 * 2.Zeile + 2 * 1.Zeile:$$\left( { \begin{matrix} -3 & 4 & 1 \\ 0 & 2 & 8 \\ 0 & 2 & 8 \end{matrix} }|{ \begin{matrix} -4 \\ 22 \\ 22 \end{matrix} } \right)$$3.Zeile - 2.Zeile:$$\left( { \begin{matrix} -3 & 4 & 1 \\ 0 & 2 & 8 \\ 0 & 0 & 0 \end{matrix} }|{ \begin{matrix} -4 \\ 22 \\ 0 \end{matrix} } \right)$$3.Zeile entfällt, 2.Zeile : 2 $$\left( { \begin{matrix} -3 & 4 & 1 \\ 0 & 1 & 4 \end{matrix} }|{ \begin{matrix} -4 \\ 11 \end{matrix} } \right)$$Daraus ergeben sich nun die Gleichungen:$$y+4z=11$$$$\Leftrightarrow y=11-4z$$und:$$-3x+4y+z=-4$$$$\Leftrightarrow 3x=4y+z+4=4(11-4z)+z+4=48-15z$$$$\Leftrightarrow x=16-5z$$z beliebig wählbar, z.B. z=3, dann Lösung:$$x=16 - 5 * 3 = 1$$$$y=11-4*3=-1$$$$z=3$$
Beantwortet von 32 k  –  ❤ Bedanken per Paypal
0 Daumen
Wir bringen es auf Normalform

2·x - 2·y + 2·z = 10
4·x - 6·y - 4·z = -2
3·x - 4·y - z = 4
x - y + z = 5

I - 2*IV, II - 4*IV, III - 3*IV

0 = 0
- 2·y - 8·z = -22
-y - 4·z = -11

Auch die zweite ist von der dritten Zeile abhängig.

-y - 4·z = -11
y = 11 - 4·z

Und jetzt noch x ausrechnen

x - y + z = 5
x - (11 - 4·z) + z = 5
x = 16 - 5·z

Damit ist der Lösung

x = 16 - 5·z
y = 11 - 4·z
z = z | Ein Freiheitsgrad
Beantwortet von 262 k

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...