0 Daumen
115 Aufrufe

Kann mir bitte jemanden mit der Aufgabe helfen? Wie soll anfangen zu beweisen dass die Lösung 1= Lösung 2 ist? Danke sehr im Voraus

 

Spezielle Lösung des inhomogenen Systems

von

1 Antwort

0 Daumen
 
Beste Antwort

Hi,

 

Weil $$ A\left(y_s^{(1)}-y_s^{(2)}\right)=0 $$ gilt gehört $$ y_s^{(1)}-y_s^{(2)} $$ zu Kern(A) und hat somit eine Darstellung der Form $$ \sum_{j=1}^k\alpha_j*x^{(j)} $$ mit geeigneten $$ \alpha_j $$ Also gilt $$ y_s^{(1)}=y_s^{(2)}+\sum_{j=1}^k\alpha_j*x^{(j)} $$ Sei jetzt x ein Element von $$ L_1 $$ dann gilt $$ x=y_s^{(1)}+\sum_{j=1}^{k}\lambda_jx^{(j)}=y_s^{(2)}+\sum_{j=1}^k\alpha_j*x^{(j)}+\sum_{j=1}^{k}\lambda_jx^{(j)}=y_s^{(2)}+\sum_{j=1}^k\beta_j*x^{(j)} $$ mit $$ \beta_j=\alpha_j+\lambda_j $$ Also ist x ein Eleent von L2. D.h. L1 ist Teilmenge von L2. Umgekehrt kann man genauso beweisen, dass L2 eine teilmenge von L1 ist und damit sind die Mengen L1 und L2 identisch.

von 23 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...