$$ \,  [k^2 \cdot t +t^2]\,_{k}^{k+1} = 9 $$
$$ \,  [k^2 \cdot (k+1) +(k+1)^2] - \,  [k^2 \cdot k +k^2] = 9  $$
$$ \,  [k^3 +k^2 +(k+1)^2] - \,  [k^3 +k^2] = 9  $$
$$ \,  k^3 +k^2 +(k+1)^2 - \,  k^3 -k^2 = 9  $$
$$ \, (k+1)^2 = 9  $$
$$ \, k+1 = \pm 3  $$
$$ \, k_{1,2} = \pm 3 -1 $$
$$ \, k_{1} = +2 $$
$$ \, k_{2} = -4 $$