Scheinbar hat da keiner Lust, das weiterzubedenken - ich finds aber interessant und spinne das mal weiter:
 $$\vec E(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} $$ $$\vec E'(t)= \begin{pmatrix} a \cdot \omega \,  \cos (\omega t)\\     - b \cdot  \omega \,  \sin (\omega t) \end{pmatrix} $$
$$\vec R_r(t)= \vec E(t) +  \frac {r} {|\vec E'(t)|} \cdot \begin{pmatrix} y(\vec E'(t) )\\-x( \vec E'(t)   ) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} +  \frac {r} {| \begin{pmatrix} a \cdot \omega \,  \cos (\omega t)\\     - b \cdot  \omega \,  \sin (\omega t) \end{pmatrix}|} \cdot  \begin{pmatrix}      - b \cdot  \omega \,  \sin (\omega t)\\  -a \cdot \omega \,  \cos (\omega t) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} +  \frac {r} {\sqrt{ ( a \cdot \omega \,  \cos (\omega t))^2+(    - b \cdot  \omega \,  \sin (\omega t) )^2}} \cdot  \begin{pmatrix}      - b \cdot  \omega \,  \sin (\omega t)\\  -a \cdot \omega \,  \cos (\omega t) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} +  \frac {r} { \omega \, \cdot \,  \sqrt{ ( a \cdot  \,  \cos (\omega t))^2+(    - b \cdot   \,  \sin (\omega t) )^2}} \cdot  \begin{pmatrix}      - b \cdot  \omega \,  \sin (\omega t)\\  -a \cdot \omega \,  \cos (\omega t) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} +  \frac {r} { \omega \, \cdot \,  \sqrt{ ( a \cdot  \,  \cos (\omega t))^2+(    - b \cdot   \,  \sin (\omega t) )^2}}\, \cdot \, (-\omega) \,\cdot \,\begin{pmatrix}       b \cdot   \,  \sin (\omega t)\\  a \cdot  \,  \cos (\omega t) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} -  \frac {r} { \,  \sqrt{ ( a \cdot  \,  \cos (\omega t))^2+(    - b \cdot   \,  \sin (\omega t) )^2}}\,  \,\cdot \,\begin{pmatrix}       b \cdot   \,  \sin (\omega t)\\  a \cdot  \,  \cos (\omega t) \end{pmatrix}$$ 
$$\vec R_r(t)= \begin{pmatrix} a \cdot \sin (\omega t)\\    b \cdot \cos (\omega t) \end{pmatrix} -  \frac {r} { \,  \sqrt{  a^2 \cdot  \,  \cos^2 (\omega t)+ b^2 \cdot   \,  \sin^2 (\omega t) }}\,  \,\cdot \,\begin{pmatrix}       b \cdot   \,  \sin (\omega t)\\  a \cdot  \,  \cos (\omega t) \end{pmatrix}$$