\(p(x)=x^4 -13 \cdot x^2 +36\)
Lösungsweg ohne Substitution oder Vieta:
\(x^4 -13 \cdot x^2 +36=0\)
\(x^4 -13 \cdot x^2 =-36\)
\(x^4 -13 \cdot x^2 +(\frac{13}{2})^2=-36+(\frac{13}{2})^2\)
\([x^2 -(\frac{13}{2})]^2=\frac{25}{4}    | ±\sqrt{~~}\)
\(1.)\)
\(x^2 -6,5=2,5    \)
\(x^2=9| ±\sqrt{~~}   \)
\(x_1=3  \)
\(x_2=-3  \)
\(2.)\)                                           
\(x^2 -6,5=-2,5    \) 
\(x^2 =4  | ±\sqrt{~~}  \)
\(x_3 =2    \)
\(x_4 =-2    \)