Dieser letzte Satz von dir (1), der wohl auch umgekehrt gilt, d.h. wenn eine alle Arbeit macht müsste sie nichts bezahlen (2) zusammen mit Georgs Ansatz eines Wertes p [€] pro geleisteter Arbeitsstunde (3) kann folgende Rechnung begründen :
Die Einzelne arbeitet a [Std] und bezahlt x [€].
Die beiden anderen arbeiten je b [Std] und bezahlen je y [€]
Damit sich die geforderten Summen ergeben, muss
(4)  a + 2b  =  60    und
(5)  x + 2y  =  1120    sein.
Damit die geleisteten Werte aller drei Beteiligten gleich sind, folgt aus (3), dass
(6)  a·p + x  =  b·p + y    sein muss.
Wenn man (4) und (5) nach a bzw. x auflöst und bei (6) einsetzt, dann erhält man
(7)   (60 - 2b)·p + (1120 - 2y)  =  b·p + y
   ⇔  60p - 2bp + 1120 - 2y  =  bp + y
   ⇔  60p + 1120  =  3bp + 3y  (Diese Gleichung (8) ist sehr logisch, also bisher kein Rechenfehler)
Wenn man (1)  (d.h. x = 1120  und  a = 0  bzw.   y = 0  und  b = 30)  in (8) einsetzt, erhält man
(9)   60p + 1120  =  90p    und somit  1120 = 30p   bzw.   p = 112/3 .
Wenn man (2)  (d.h. x = 0  und  a = 60   bzw.   y = 560  und  b = 0)  in (8) einsetzt, erhält man
(10)  60p + 1120 = 1680   und somit   60p = 560   bzw.   p = 28/3 .
Die Bedingungen (1), (2) und (3) sind also mit einem einheitlichen Stundenlohn p nicht zu erfüllen.
Für  x = 0  ist  p = 28/3 ,  für  x = 1120  ist  p = 112/3. 
Wenn es einen linearen Zusammenhang zwischen x und p gibt, dann lautet er
(11)   p(x)  =  ( 112/3 - 28/3 ) / (1120 - 0 ) · x  +  28/3  =  x/40 + 28/3 .
Die Aufgabe war, eine gerechte Aufteilung für  x = 530  zu finden.
Aus (11) folgt zunächst  p(530)  =  530/40 + 28/3  =  271/12 .
Nun ergibt sich aus (5)  y = (1120 - 530)/2 = 295
und aus (8)  60·271/12 + 1120  =  3·b·271/12 + 3·295  somit  b = 6360/271  ≈  23,46
sowie  a  =  60 - 2b  ≈ 13,06
Das entspricht recht genau den von Trashcan vorgeschlagenen Werten.