0 Daumen
163 Aufrufe

ich habe die Gleichung

ln(x)-0,5*(ln(1-x^2)=0,5t^2+c

und muss die nach x umformen. ich dachte jetzt natürlich an die e-Funktion, aber es kommt nie das richtige Ergebnis raus

von

1 Antwort

+1 Daumen
 
Beste Antwort

Es gelten folgende Eigenschaften: $$\ln x^a=a\cdot ln x \\ \ln \frac{a}{b}=\ln a-\ln b$$

Wir bekommen also folgendes: $$\ln (x)-0,5\cdot \ln (1-x^2)=0,5t^2+c \\ \Rightarrow \ln (x)- \ln (1-x^2)^{0,5}=0,5t^2+c \\ \Rightarrow \ln \frac{x}{(1-x^2)^{0,5}}=0,5t^2+c \\ \Rightarrow e^{ \ln \frac{x}{(1-x^2)^{0,5}}}=e^{0,5t^2+c} \\ \Rightarrow  \frac{x}{(1-x^2)^{0,5}}=e^{0,5t^2+c} \\ \Rightarrow  \frac{x}{\sqrt{1-x^2}}=e^{0,5t^2+c}$$ Wir können jetzt die Gleichung quadrieren und bekommen folgendes: $$\frac{x^2}{1-x^2}=e^{2\cdot \left(0,5t^2+c\right)} \Rightarrow \frac{x^2}{1-x^2}=e^{t^2+2c} \\ \Rightarrow x^2=(1-x^2)\cdot e^{t^2+2c} \\ \Rightarrow x^2\cdot \left(1+e^{t^2+2c}\right)=e^{t^2+2c} \\ \Rightarrow x^2=\frac{e^{t^2+2c}}{1+e^{t^2+2c}} \\ \Rightarrow x= \pm \sqrt{\frac{e^{t^2+2c}}{1+e^{t^2+2c}}}$$ Da das x positiv sein muss (wegen ln(x) ) ist die Lösung der Glechung $$x=\sqrt{\frac{e^{t^2+2c}}{1+e^{t^2+2c}}}$$

von 6,9 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community