Spiegelung am Beispiel d=3, R3 :
Abstand Punkt x - Ebene, n ={n1,n2,n3} normiert |n|=1
Spiegelung: x' = x - 2 (Abstand x zur Ebene) Richtung Normalenvektor
{x1,x2,x3} - 2 ((n1,n2,n3) (x1,x2,x3)) {n1,n2,n3}
{−2n12x1−2n1n2x2−2n1n3x3+x1,−2n1n2x1−2n22x2−2n2n3x3+x2,−2n1n3x1−2n2n3x2−2n32x3+x3}
===>
S3=(−2n12+1−2n1n2−2n1n3−2n1n2−2n22+1−2n2n3−2n1n3−2n2n3−2n32+1)
n : =⎝⎛05−152⎠⎞ ===> S3 : =(100053540545−3) ===> S3(−1−15)=(−15175−19)
Projektion: x' = x - (Abstand x zur Ebene) Richtung Normalenvektor
analog