(a4+b4)x2−2(a2+b2)x+1=0
(a4+b4)x2−2(a2+b2)x=−1
x2−a4+b42(a2+b2)x=−a4+b41
x2−a4+b42(a2+b2)x+(a4+b4a2+b2)2=−a4+b41+(a4+b4a2+b2)2
(x−a4+b4a2+b2)2=−a4+b41+(a4+b4a2+b2)2∣±
1.)
x−a4+b4a2+b2=−a4+b41+(a4+b4a2+b2)2
x1=a4+b4a2+b2+−a4+b41+(a4+b4a2+b2)2
2.)
x−a4+b4a2+b2=−−a4+b41+(a4+b4a2+b2)2
x2=a4+b4a2+b2−−a4+b41+(a4+b4a2+b2)2
(a4+b4a2+b2)2−a4+b41=(a4+b4a2+b2)2−(a4+b4)2a4+b4=(a4+b4)2a4+2a2b2+b4−a4−b4=(a4+b4)22a2b2=∣a4+b4∣∣a∣⋅∣b∣2