0 Daumen
94 Aufrufe

Hallo zusammen, ich habe hier eine Aufgabe bei der ich die Nullstellen bestimmen muss und ich habe auch schon die Lösungen dazu nur leider ohne Rechenweg. Kann mir bitte einer sagen wie man auf das Ergebinus kommt.

Aufgabe.1

a) f(x)= 1/x-1 Lösung: Keine Nullstellen 

b) g(x) √x-1 Lösung: x=1

c) h(x)= ln(x-1) Lösung: x=2

d) k(x) 6/x+ 1/x-1 Lösung: x1=3 x2=-3

von

3 Antworten

+2 Daumen
 
Beste Antwort

1/(x-1) = 0

Ein Bruch wird Null wenn der Zähler Null wird. Der Zähler ist hier 1 und 1 ist nie Null.

√x - 1 = 0
√x = 1
x = 1

oder

√(x - 1) = 0
x - 1 = 0^2
x = 1

ln(x - 1) = 0
x - 1 = e^0 = 1
x = 2

6/x^4 + 1/x^2 - 1 = 0
6 + 1x^2 - x^4 = 0
x^4 - x^2 - 6 = 0
z^2 - z - 6 = 0
(z - 3)(z + 2) = 0
z = 3 --> x = ±√3
z = -2 --> Keine Lösung für x

von 285 k

Wie bist du bei der d) auf 6 +1x2-xgekommen? Warum verschwindet die -1?

Du multiplizierst die Gleichung mit dem Hauptnenner x^4.

+1 Punkt

Grundsätzlich bestimmt man Nullstellen einer Funktion f indem man die Gleichung

        f(x) = 0

löst.

a) Multipliziere die Gleichung mit dem Nenner

b) Quadriere

c) Wende die Exponentialfunktion an

d) Multipliziere mit x4

von 41 k  –  ❤ Bedanken per Paypal
+1 Punkt

a) f(x)= 0 = 1/(x-1) |*(x-1)

0=1 ->keine Lösung


--------------------------------

b) g(x)=0= √x -1 |+1

1= √x | (..)^2

1=x

--------------------------

c) h(x)=0=ln(x-1) | e hoch

e^0= e^{ln(x-1)}

1=x-1

x=2

--------------

von 84 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...