0 Daumen
935 Aufrufe

Bestimmen sie folgenden Grenzwert, falls dieser existiert:

Lim k→unendlich ((k2 + 5k)/(k+2)         +      (4k2 -k3)/ (k2-4))

Gerne mit genauerer Erklärung der Vorgangsweise (Thema liegt mir leider nicht besonders) 

Avatar von

Achtung du verwendest zu wenig Klammern bei:

Lim k→unendlich (k2 + 5k/k+2 + 4k2 -k3/ k2-4)

Ergänze alle, die du dir denken kannst.

Bisher hast du Folgendes eingegeben https://www.wolframalpha.com/input/?i=(k%5E2+%2B+5k%2Fk%2B2+%2B+4k%5…

Skärmavbild 2018-03-26 kl. 18.27.45.png

EDIT: Ich habe oben Klammern ergänzt.

((k2 + 5k)/(k+2)        +      (4k2 -k3)/ (k2-4))

Dein erster Job ist es jetzt, diese beiden Brüche formal zu addieren.

2 Antworten

+1 Daumen


   So;  jetzt tun wir mal so, als wenn wir rechnen können.  Polynomdivision, und zwar Polynomdivision durch Linearfaktor  (  PDLF  )

   Ist bekannt, dass  PDLF  mit dem Hornerschema geht?


     f  (  x  )  :=  a2  x  ²  +  a1  x  +  a0       (  1a  )

                        a2  =  1  ;  a1  =  5  ;  a0  =  0       (  1b  )


        PDLF  vollzieht sich ja nach dem Schema


      f  (  x  )  :  (  x  +  2  )  =  m  x  +  b  Rest  f  (  -  2  )    (  2  )


    Die frohe Botschaft:  PDLF  geht über Onkel Horner


   p2 ( f )        = a2 ( f )                            = 1      = m        (  3a  )

   p1 ( f ; - 2 ) = a1 ( f ) - 2 p2 = 5 - 2 * 1 = 3      = b       (  3b  )

  p0 ( f ; - 2 ) = a0 ( f ) - 2 p1 = 0 - 2 * 3 = ( - 6 ) = f ( - 2 )      (  3c  )

     ( x  ²  +  5  x  )  :  (  x  +  2  )  =  x  +  3  -  6 / ( x + 2 )  (  3d  )


    Ich freu mich ja,   dass ihr alle PD könnt.   Ihr nutzt sie nur für die unmöglichsten Zwecke und nicht, wenn es wirklich wichtig ist.  Jetzt die zweite gebrochen rationale Funktion


 (  x  ³ - 4 x ²               )  :  ( x ² - 4 ) = x - 4 + 4 ( x - 4 ) : (x²-4) ( 4 )

    x ³             - 4 x

   ---------------------------

         - 4 x ²  + 4 x

        - 4 x ²            + 16


   Die Asymptotik kürzt sich in ( 3d )  -  (  4  )


     (  x  +  3  )  -  (  x  -  4  )  =  7     (  5  )


    Und 7 ist dieser Grenzwert;  die Asymptote, gegen die der graf strebt.

Avatar von 5,5 k
0 Daumen

Bruchaddition:

ohne Gewähr!

((k2 + 5k)/(k+2)        +      (4k2 -k3)/ (k2-4)

=  ((k2 + 5k)(k-2))/((k+2)(k-2))         +      (4k2 -k3)/ (k2-4)

=  (k3 + 5k2 - 2k2 - 10k)/(k2 - 4)        +      (4k2 -k3)/ (k2-4)

=  ((k3 + 5k2 - 2k2 - 10k)       +      (4k2 -k3))/ (k2-4)

=  ( 7k2  - 10k )/ (k2-4)

Sollte das oben stimmen (wenn nicht, mit deinen Zahlen weiterrechnen):

lim  ( 7k2  - 10k )/ (k2-4)

= lim  ( 7  - 10/k )/ (1 - 4/k2)       | oben und unten durch k2

= (7+0) / (1 - 4*0)

= 7 / 1

= 7

Avatar von 162 k 🚀

  Hättest du Polynomdivision genommen, wäre das nicht vorgekommen.

   PD nicht nur lernen, sondern sich ihrer auch bedienen; ihr Sinn besrteht darin, dass die ganz rationalen teile abspalten.

Hättest du Polynomdivision genommen, wäre das nicht vorgekommen.

Was "das" wäre denn nicht vorgekommen? Wir haben zufällig dasselbe Resultat ;)

 Es ist nur techniasch organisatorisch; ich habe die Chance, dass sich ein Term wie  " x " weg hebt.  Wer über den  HN  geht, schleppt sich mit mehr Klammern.

   sollte man nicht doch erst mal vorverdauen?

Ein anderes Problem?

Stell deine Frage