0 Daumen
1,1k Aufrufe

Aufgabe:

123 \sqrt[3]{\frac{1}{2}}   die Lösung läuft (12 \frac{1}{2} 43 \sqrt[3]{4} )

Avatar von

Was meinst du mit "die Lösung läuft"?

3 Antworten

+2 Daumen
 
Beste Antwort

Hallo davi,

zunächst mal handelt es sich bei der vorgeschlagenen Lösung nicht unbedingt um eine Vereinfachung, wie ein vergleichender Blick auf beide Terme zeigt.

Es geht eher darum, den Bruchterm so umzuschreiben, dass man wenigstens im NENNER ohne Wurzel auskommt.

Im Nenner steht zunächst die Zahl 2. Das ist keine Kubikzahl, also kann man davon nicht so ohne weiteres die dritte Wurzel bilden.

Wird jedoch der Bruch 12\frac{1}{2} mit 4 erweitert, entsteht der Bruch  48\frac{4}{8}.

Es gilt für jeden Bruch abn=anbn \sqrt[n]{\frac{a}{b}} =\frac{ \sqrt[n]{a}}{ \sqrt[n]{b}}, somit ist

483=4383 \sqrt[3]{\frac{4}{8}} =\frac{ \sqrt[3]{4}}{ \sqrt[3]{8}} , und für 83 \sqrt[3]{8} kann man, weil 8 die dritte Potenz von 2 ist, einfach 2 schreiben.

Avatar von 56 k 🚀

Danke für die Erklärung :)

+1 Daumen

123 \sqrt[3]{\frac{1}{2}} 123 \frac{1}{\sqrt[3]{2}} 2232 \frac{\sqrt[3]{2^2}}{2} 432 \frac{\sqrt[3]{4}}{2} 12 \frac{1}{2} 43 \sqrt[3]{4}

Avatar von 5,9 k
+1 Daumen

(1/2)^(1/3) ?=1/2* (1/2)^(-2/3) = 1/2* 2^(2/3) = 1/2* (22)^(1/3) = 1/2* 4^(1/3)

Avatar von 81 k 🚀

Ein anderes Problem?

Stell deine Frage