0 Daumen
178 Aufrufe
folgendes Problem: Die Funktion f(x)=(a-lnx)*lnx soll partiell integriert werden. Wie geht man am besten vor?  
von

1 Antwort

0 Daumen

Hi,

schreibe das Integral als Summe:

$$a\int \ln(x)dx - \int\ln^2(x)dx$$

Das erste Integral ist einfach, bzw. dürfte bekannt sein:

$$ax\ln(x)-ax$$

über partielle Integration, bzw. einfach da bekannt.

 

Beim zweiten Integral ebenfalls partielle Integration (zweifach):

mit f = ln2(x) und g' = 1

--> f' = 2ln(x)/x und g = x

$$x\ln^2(x)-2\int\ln(x) dx$$

Für letzteres wieder die partielle Integration, bzw. Wissen (bzw. man hat es mit dem ersten Summanden bereits ausgerechnet)

Führt für das zweite Integral insgesamt auf:

$$x\ln^2(x)-2x\ln(x)+2x + c$$

 

Für das Gesamtintegral also:

$$F(x) = (a+2)x\ln(x) - ax - x\ln^2(x)-2x) + c$$

 

Grüße

von 139 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community