0 Daumen
244 Aufrufe

In einer Urne liegen 7 blaue, 8 grüne und \( x \) rote Kugeln. Es werden 2 Kugeln ohne Zurücklegen gezogen. Die Wahrscheinlichkeit, dabei 2 blaue Kugeln zu erhalten ist um \( \frac{11}{190} \) grösser als die Wahrscheinlichkeit, 2 rote Kugeln zu erhalten. Wie viele rote Kugeln liegen in der Urne?

Problem/Ansatz:

Bitte kann mir jemand helfen die Aufgabe zu lösen bzw. mir die Rechenwege erklären wie man auf diese Lösungen kommt.
Danke

von

Du bestimmst Terme für die beide Wahrscheinlichkeiten und formulierst damit dann eine passende Bruchgleichung.

2 Antworten

0 Daumen

Insgesamt 15+x Kugeln.

Blau:

$$ p_B=\frac{7}{15+x}\cdot\frac{6}{14+x} $$

Rot:

$$ p_R=\frac{x}{15+x}\cdot\frac{x-1}{14+x} $$

$$ p_B=p_R+\frac{11}{190} $$

$$ \frac{7}{15+x}\cdot\frac{6}{14+x}=\frac{x}{15+x}\cdot\frac{x-1}{14+x}+\frac{11}{190} $$

Nun könnte man diese Gleichung lösen.

Ich lasse sie auf mich wirken und denke, dass x=5 ein guter Kandidat wäre, da dann \(20\cdot 19=380\), also das Doppelte von 190, im Nenner steht.

$$ \frac{7}{15+5}\cdot\frac{6}{14+5}=\frac{42}{380}$$

$$\frac{5}{15+5}\cdot\frac{5-1}{14+5}+\frac{11\cdot2}{190\cdot 2}=\frac{20+22}{380}=\frac{42}{380}~~~ \checkmark$$

Es sind 5 rote Kugeln.

PS: Die zweite Lösung ist negativ und entfällt deshalb.    :-)

von 42 k
0 Daumen

In einer Urne liegen 7 blaue, 8 grüne und x
rote Kugeln. Es werden 2 Kugeln ohne Zurücklegen gezogen. Die Wahrscheinlichkeit, dabei 2 blaue Kugeln zu erhalten ist um 11/190 grösser als die Wahrscheinlichkeit, 2 rote Kugeln zu erhalten.

blau = 7 / ( 15 + x )
2.blaue = 6 / ( 14 + x )
beide blau : 7 / ( 15 + x ) * 6 / ( 14 + x )

rot = x / ( 15 + x )
2.rote = ( x - 1 ) / ( 15 + x  -1 ) = ( x - 1 ) / ( 14 + x   )
beide rot :  x / ( 15 + x ) * ( x - 1 ) / ( 14 + x  )

blau - rot = 11/190

7 / ( 15 + x ) * 6 / ( 14 + x ) - x / ( 15 + x ) * ( x - 1 ) / ( 14 + x  ) = 11/190
x = 5 rote Kugeln

von 122 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community