1) \(180 - 100e^{-2,4*(x - 0,5)} + 10 = 0\)
\(190 - 100e^{-2,4*x +1,2 }  = 0\)
\(19 - 10*e^{-2,4*x }*e^{1,2}  = 0   | *e^{2,4x}\)
\(19*e^{2,4x} - 10*e^{1,2}  = 0  \)
\(19*e^{2,4x}  = 10*e^{1,2} \)
\(\frac{e^{2,4x}}{e^{1,2} }  = \frac{10}{19}\)
\(e^{2,4x-1,2}  = \frac{10}{19}\)
\(e^{2,4x-1,2}  = e^{ln(\frac{10}{19})}\)
\(2,4x-1,2  = ln(\frac{10}{19})\)
\(2,4x  = ln(\frac{10}{19})+1,2\)
\(x  = \frac{ln(\frac{10}{19})}{2,4}+0,5\)