Die gesuchten Wahrscheinlichkeiten lassen sich mit der "hypergeometrischen Verteilung" berechnen, mit der auch die Wahrscheinlichkeiten für k Richtige beim "Lotto 6 aus 49" berechnet werden kann.
Die hypergeometrische Verteilung h sieht so aus:
h(k∣N,M,n)=(Nn)(Mk)(N−Mn−k)
Dabei ist
N : Die Anzahl der Elemente der Grundgesamtheit.
Beim "Lotto 6 aus 49" ist N = 49.
In deinem Beispiel ist im ersten Monat N = 349, im zweiten Monat N = 409 und im dritten Monat N = 357
M : Die Anzahl der Elemente, die eine bestimmte Eigenschaft haben.
Beim "Lotto 6 aus 49" ist diese Eigenschaft die, gezogen zu werden, also M = 6.
In deinem Beispiel ist die Eigenschaft die, deine Lose zu sein. Im ersten Monat ist also M = 1 , im zweiten Monat M = 3 und im dritten Monat ebenfalls M = 3.
n : Die Anzahl der Elemente einer Stichprobe.
Beim "Lotto 6 aus 49" ist dies die Anzahl der Kreuze, die man auf dem Tippzettel macht, also n = 6
In deinem Beispiel ist dies die Anzahl Ziehungen, die durchgeführt werden. Im ersten Monat ist also n = 35 , im zweiten Monat n = 37 und im dritten Monat n = 38.
k : Die Anzahl der Treffer.
Beim "Lotto 6 aus 49" liegt k zwischen 0 und 6, je nachdem, nach welcher Anzahl "Richtiger" man fragt.
In deinem Beispiel ist k = 1
Die Hypergeometrische Verteilung gibt nun die Wahrscheinlichkeit dafür an, dass sich in einer Stichprobe von n der N Elemente der Grundgesamtheit k der M Elemente mit der bestimmten Eigenschaft befinden.
In deinem Beispiel gilt:
1. Monat:
P(Gewinn)=(34935)(11)(349−135−1)=(34935)(11)(34834)≈0,1002=10,02Proz.
2. Monat:
P(Gewinn)=(40937)(31)(409−337−1)=(40937)(31)(40636)≈0,2256=22,56Proz.
3. Monat:
P(Gewinn)=(35738)(31)(357−338−1)=(35738)(31)(35437)≈0,2563=25,63Proz.
Die Wahrscheinlichkeit, in allen drei Monaten zu gewinnen, ist (unter der vorliegend anzunehmenden Voraussetzung der statistischen Unabhängigkeit) gleich dem Produkt der drei Einzelwahrscheinlichkeiten, also:
P ("3 mal in Folge gewinnen") ≈ 0,1002 * 0,2256 * 0,2563 ≈ 0,005793692256 = 0,58 %