0 Daumen
2,3k Aufrufe

1)

Sei ε > 0. Finden Sie ein n0 ∈ ℕ, so dass für alle natürliche n ≥ n0 gilt:

$$ |\frac { 3n+2 }{ 5n+7 } -\frac { 3 }{ 5 } |<\epsilon  $$


2)

Beweisen Sie:

$$ \lim _{ n\longrightarrow \infty  }{ (\sqrt { n+1 } -\sqrt { n } ) } =0. $$

Hinweis. Betrachten Sie:

$$ (\sqrt { n+1 } -\sqrt { n } )\cdot (\sqrt { n+1 } +\sqrt { n } ) $$

Avatar von

1 Antwort

+2 Daumen
 
Beste Antwort

|(3·n + 2)/(5·n + 7) - 3/5| < e

|-11/(25·n + 35)| < e

11/(25·n + 35) < e

11 < e(25·n + 35)

11 < 25·e·n + 35·e

11 - 35·e 25·e·n

(11 - 35·e)/(25·en

n > 0.44/e - 1.4

Avatar von 493 k 🚀

lim (n→∞) (√(n + 1) - √n)

= lim (n) (√(n + 1) - √n)(√(n + 1) + √n) / (√(n + 1) + √n)

= lim (n1 / (√(n + 1) + √n) = 0

Wie kommst du bei der a) auf -11 im Zähler. Kann den ersten Schritt nicht nachvollziehen.

kantoloy: Das war eine Subtraktion von Brüchen.

Du musst zuerst erweitern.

Ist jetzt klar geworden. Hatte mich einfach verrechnet.

Ein anderes Problem?

Stell deine Frage