Hallo
a) geht auch prima mit Formel:
- Polynom liegt bereits ohne kubisches Glied vor (nach Division durch x):
x4 +x2 +6x +4 = 0
x4 +a x2 +b x +c = 0
- Ansatz (x2 +P)2 = (Q x +R)2
P3 -a/2 P2 -c P +ac/2 -b2/8 = 0
P3 - 1/2 P2 -4 P +2 -36/8 = 0
(P -1/6)3 -4 -1/12 (P -1/6) -36/8 -4*1/2/3 -2(1/2/3)3 = 0
(P -1/6)3 -49/12 (P -1/6) -343/108 = 0
lineares Glied ist negativ -> cos bzw. cosh benutzen
P1 -1/6 = 2 * (49/12/3)0.5 * cos 1/3 arccos +(343/108/2) / ((49/12/3)3)0.5
P1 -1/6 = 2 * 7/6 * cos 1/3 arccos +(343/216) / (343/216)
P1 = 15/6
x1,2 = -b/|b| * ( -a/4 +P/2 )0.5 +/- ( -a/4 -P/2 +(P2 -c)0.5 )0.5
x3,4 = +b/|b| * ( -a/4 +P/2 )0.5 +/- ( -a/4 -P/2 -(P2 -c)0.5 )0.5
x1,2 = -6/|6| * ( -1/4 +15/12 )0.5 +/- (-1/4 -15/12 +((15/6)2 -4)0.5 )0.5
x1,2 = -6/|6| * ( -3/12 +15/12 )0.5 +/- (-3/12 -15/12 +(225/36 -144/36)0.5 )0.5
x1,2 = - (12/12 )0.5 +/- (-18/12 +(81/36)0.5 )0.5
x1,2 = - (1 )0.5 +/- (-9/6 +(9/6) )0.5
x1,2 = - (1 )0.5 +/- (-9/6 +(9/6) )0.5
x3,4 = +(1)0.5 +/- (-9/6 -9/6)0.5
x1,2 = -1 +/- 0
x3,4 = +1 +/- i * (30.5)