f(x) = x^2 - 3·x^3
m = (f(x + h) - f(x)) / h
m = (((x + h)^2 - 3·(x + h)^3) - (x^2 - 3·x^3)) / h
m = (((x^2 + 2·h·x + h^2) - 3·(x^3 + 3·h·x^2 + 3·h^2·x + h^3)) - (x^2 - 3·x^3)) / h
m = ((x^2 + 2·h·x + h^2 - 3·x^3 - 9·h·x^2 - 9·h^2·x - 3·h^3) - (x^2 - 3·x^3)) / h
m = (x^2 + 2·h·x + h^2 - 3·x^3 - 9·h·x^2 - 9·h^2·x - 3·h^3 - x^2 + 3·x^3) / h
m = (2·h·x + h^2 - 9·h·x^2 - 9·h^2·x - 3·h^3) / h
m = 2·x + h - 9·x^2 - 9·h·x - 3·h^2
m = 2·x - 9·x^2 + h - 9·h·x - 3·h^2
für x = 1 und h --> 0 gilt
m = 2·1 - 9·1^2 + 0 - 9·0·1 - 3·0^2 = -7