Das geht sogar EXAKT:
e-3 x/5 ( ex/5-1)=1/24
e3 x/5 + 24 = 24 ex/5 Substitution: u=ex/5;x=ln(u)*5
u³-24u+24=0
PQRST-Formel: http://www.lamprechts.de/gerd/Quartische_Gleichung.html
u1 = -(2 (1 + i sqrt(3)))/(1/2 (-3 + i sqrt(23)))1/3 - (1 - i sqrt(3)) (1/2 (-3 + i sqrt(23)))1/3
u2 = -(2 (1 - i sqrt(3)))/(1/2 (-3 + i sqrt(23)))1/3 - (1 + i sqrt(3)) (1/2 (-3 + i sqrt(23)))1/3
u3 = 4/(1/2 (-3 + i sqrt(23)))1/3 + 22/3 (-3 + i sqrt(23))1/3
Rücksubst:
x1 = ln(-(2 (1 + i sqrt(3)))/(1/2 (-3 + i sqrt(23)))1/3 - (1 - i sqrt(3)) (1/2 (-3 + i sqrt(23)))1/3)*5
=8.3744034136050537440172876481+15.7079632679489661923132169163975 i
x2 = ln(-(2 (1 - i sqrt(3)))/(1/2 (-3 + i sqrt(23)))1/3 - (1 + i sqrt(3)) (1/2 (-3 + i sqrt(23)))1/3)*5
=0.234192705737269132476396603359162016611826
x3 = ln(4/(1/2 (-3 + i sqrt(23)))1/3 + 22/3 (-3 + i sqrt(23))1/3)*5
=7.281673032397405221741023755018131953750957788
Probe mit allen 3 Lösungen:
24*(e-4x/10-e-6x/10),x=8.3744034136050537440172876+15.7079632679489661923132 i
ergibt 1
24*(e-4x/10-e-6x/10),x=0.234192705737269132476396603359162016611826
ergibt 1
24*(e-4x/10-e-6x/10),x=7.281673032397405221741023755018131953750957788
ergibt 1