0 Daumen
465 Aufrufe

Aufgabe:

\( \frac{\frac{1}{2 \cdot x^{\frac{1}{8}}} \cdot 1}{4 \cdot x^{\frac{7}{8}}}=\frac{1}{8 \cdot x} \)

Was wurde hier gemacht, dass das Ergebnis rauskommt?

von

2 Antworten

0 Daumen
 
Beste Antwort

1/(2·x^{1/8})·1 / (4·x^{7/8})

= 1/(2·x^{1/8}) / (4·x^{7/8})

= 1/(2·x^{1/8}) · 1/(4·x^{7/8})

= 1/(2·x^{1/8}·4·x^{7/8})

= 1/(8·x^{1/8 + 7/8})

= 1/(8·x)

von 385 k 🚀
0 Daumen

$$\begin{aligned} \frac{1}{\frac{2\cdot x^{\frac{1}{8}}\cdot 1}{4\cdot x^{\frac{7}{8}}}} &=\frac{1}{8} \cdot x^{-\frac{1}{8}} \cdot x^{-\frac{7}{8}} \\ &=\frac{1}{8} x^{-\frac{1}{8}+\left(-\frac{7}{8}\right)} \\ &=\frac{1}{8} x^{-\frac{8}{8}} \\ &=\frac{1}{8 x} \\ &=\left[allg.\space {a^{m} \cdot a^{n}}=a^{m+n}\right] \end{aligned}$$                                  

von 110 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community