Wie berechnet man diese Bruchrechnung Schritt für Schritt?
1xy2−1y+1yx2−1x \dfrac{ 1 }{ \dfrac{x}{y^2} - \dfrac{1}{y} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{1}{x} } y2x−y11+x2y−x11
1 / (x/y2-1/y) + 1/ (y/x2-1/x)
1xy2−1y+1yx2−1x=1x−yy2+1yx2−y−xx2=y2x−y+x2y−x=y2x−y+x2−(x−y)=1x−y · (y2−x2)=−(x−y) · (x+y)x−y∣x−y≠0=−(x+y)=−x−y \dfrac{ 1 }{ \dfrac{x}{y^2} - \dfrac{1}{y} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{1}{x} } \\ = \dfrac{ 1 }{ \dfrac{x-y}{y^2} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{y-x}{x^2} } \\ = \dfrac{ y^2 }{ x-y } + \dfrac{ x^2 }{ y - x } \\ = \dfrac{ y^2 }{ x-y } + \dfrac{ x^2 }{ -(x - y) } \\ = \dfrac{ 1 }{ x-y } · (y^2 - x^2) \\ = \dfrac{ -(x - y)·(x + y) }{ x-y } \qquad | x-y ≠ 0 \\ = -(x + y) = -x - y y2x−y11+x2y−x11=y2x−y1+x2y−x2y−x1=x−yy2+y−xx2=x−yy2+−(x−y)x2=x−y1 · (y2−x2)=x−y−(x−y) · (x+y)∣x−y=0=−(x+y)=−x−y
1/(x/y2 - 1/y) + 1/(y/x2 - 1/x)
= 1/(x/y2 - y/y2) + 1/(y/x2 - x/x2)
= 1/((x - y)/y2) + 1/((y - x)/x2)
= y2/(x - y) + x2/(y - x)
= y2/(x - y) - x2/(x - y)
= (y2 - x2)/(x - y)
= (y + x)(y - x)/(x - y)
= - (y + x)
= - (x + y)
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos