0 Daumen
688 Aufrufe

Wie berechnet man diese Bruchrechnung Schritt für Schritt?

1xy21y+1yx21x \dfrac{ 1 }{ \dfrac{x}{y^2} - \dfrac{1}{y} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{1}{x} }

1 /    (x/y2-1/y)      +  1/    (y/x2-1/x)

Avatar von

2 Antworten

+1 Daumen
 
Beste Antwort

1xy21y+1yx21x=1xyy2+1yx2yxx2=y2xy+x2yx=y2xy+x2(xy)=1xy · (y2x2)=(xy) · (x+y)xyxy0=(x+y)=xy \dfrac{ 1 }{ \dfrac{x}{y^2} - \dfrac{1}{y} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{1}{x} } \\ = \dfrac{ 1 }{ \dfrac{x-y}{y^2} } + \frac{ 1 }{ \dfrac{y}{x^2} - \dfrac{y-x}{x^2} } \\ = \dfrac{ y^2 }{ x-y } + \dfrac{ x^2 }{ y - x } \\ = \dfrac{ y^2 }{ x-y } + \dfrac{ x^2 }{ -(x - y) } \\ = \dfrac{ 1 }{ x-y } · (y^2 - x^2) \\ = \dfrac{ -(x - y)·(x + y) }{ x-y } \qquad | x-y ≠ 0 \\ = -(x + y) = -x - y

Avatar von 121 k 🚀
+1 Daumen

1/(x/y2 - 1/y) + 1/(y/x2 - 1/x)

= 1/(x/y2 - y/y2) + 1/(y/x2 - x/x2)

= 1/((x - y)/y2) + 1/((y - x)/x2)

= y2/(x - y) + x2/(y - x)

= y2/(x - y) - x2/(x - y)

= (y2 - x2)/(x - y)

= (y + x)(y - x)/(x - y)

= - (y + x)

= - (x + y)

Avatar von 492 k 🚀

Ein anderes Problem?

Stell deine Frage