0 Daumen
340 Aufrufe
Wie zeige ich dass die abbildung zweier Vektorraum bijektiv sind?

Und wie mache ich dass bei der Umkehrabbildung?
Gefragt von

1 Antwort

+1 Punkt
 
Beste Antwort

Ich denke mal, du möchtest

"Seien V und W zwei K-Vektorräume und sei f: V --> W ein Isomorphismus. Zeigen Sie, dass die Umkehrabbildung f^-1 : W --> V auch ein Isomorphismus ist."

wissen, richtig?

Isomorphismus gilt nur, wenn die Abbildung linear ist. Du musst also zwei Dinge zeigen:

1. f-1 ist eine Bijektion.

2. f-1 ist linear.

Zu 1.: Ergibt sich aus der Definition.

Zu 2.: Seien w1,w2 ∈W, dann gilt f -1 (w1 + w2 ) = f -1 (f(f -1 (w1 )) + f(f -1 (w2 )))

= f -1 (f(f -1 (w1 ) + f -1 (w2 ))) (wegen der Linearität von f)

= f -1 (w1 ) + f -1 (w2 ).

Analog dazu kann die skalare Multiplikation behandelt werden.

Beantwortet von 2,5 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...