Glücklicher Weise trifft es sich, dass ich vor allem im Job ( als nummerischer Programmierer in einem Welt-Elektronikkonzern ) mit ===>  Lagrangepolynomen in Berührung kam. Snst würde ich diese kryptischen Formulierungen gar nicht durchschauen. Aber fangen wir vorne an.
    Was ist ein Polynom?  Bestimmt keine Funktion; mein hoch verehelichter Prof.   " Lothar "  wusste da immer ein so herrliches Beispiel.  Das Polynom 
        p  €  F2  [  x  ]  :=  x  ²  +  x       (  1a  )
     ist sicher nicht das Nullpolynom, da es ja vom  2. Grade ist.    Wir wollen aber stets im Hinterkopf behalten: F2 ist der  ===>  Restklassenkörper mod  2  ===>  Schaltkörper.    Seine  ===>  Charakteristik ist  2 
          1  +  1  =  0           (  1b  )
      Dann folgt aber  aus  (  1ab  )
     p  (  0  )  =  p  (  1  )  =  0           (   1c  )
    Oha;  Polynom  p  induziert die Nullabbildung.  Ich meine nur;  du musst sorgfältig unterscheiden  zwischen dem abstrakten Polynom an und für sich  und der Zuordnung, die sich ergibt,  wenn  du für die Variable x  konkrete Zahlen einsetzt.  Die  Dimension der Algebra    F2  [  x  ]    über F2  beträgt Aleph_0 = ( abzählbar  )   unendlich;  dagegen Abbildungen von F2 nach F2   gibt es nur 4 Stück.
   Ich sage immer im Spaß
   "  Ein Polynom ist keine Funktion, sondern eine Schablone zum Drucken von Falschgeld. "
    Ein Polynom bedarf nämlich keines Definitionsbereichs; es frisst alles, was sich addieren und multiplizieren  lässt. Nicht nur Zahlen, sondern auch Matrizen vom format 4 711 X 4 711 ...
   Ja selbst Dinge, die heute noch gar nicht entdeckt sind. Das wäre mir ein schöner Definitionsbereich
   " Alles, was noch nicht entdeckt ist ... "
   Und? Was bedeutet eigentlich die Variable  "  x  "  in  der Definition eines Polynoms?
      GAAAR NICHTS .
     Bist du nicht asiatisch gebildet?
   " Die vornehmste Meditation ist die über das Nichts ... "
   Schau dir das Ganze mal an im v.d. Waerden,  noch besser dem Otto_Haupt_Skript.    Hinter einem Polynom verbirgt sich weiter nichts als eine ( endliche =) Folge;  hey hast du das schon gewusst?  Dieses  x dient allein Mnemotechnischen Zwecken. Z.B. das Einsetzen von Variablen für dieses x wird dann eingeführt  als ===>  Homomorphismus  von dem ( abstrakten ) Polynomring in den eigentlichen Definitionsbereich.  Auf diesem Wege ist die Welt wieder in Ordnung; müssteste dir mal ansehen.   Also die Aufgabe setzt definitiv voraus, dass du davon schon mal gehört hast.
   In "  Dualraum "  bin ich absolut Spitze;   Ich führ jetzt am besten die ===>  Diracsche ===>  Bracketnotation ein.   Ansonsten schau nochmal im Kowalski oder Greub.
   Die Vektoren von V  :=  |R  ^ n  (  z.B. kanonische Basis  )  will ich notieren als Ketvektoren
        |  i  >     ;  i  =  1  ,  ... ,  n           (  2a  )
    Der Dualraum V * wird jetzt eingeführt als Menge aller linearen Abbildungen von V in Grundkörper  K  (  hier: |R  )  Es stellt sich heraus, dass V * eben Falls  Dimension n hat;  die Elemente von V *   wollen wir als  "  Bra  "  <  j  |  notieren. Das Prinzip hinter dieser Abbildung wird sofort klar, wenn ich diese Bravektoren speziell so wähle, dass
       <  i  |  j  >  =  DELTA (  i  ;  j  )       (  2b  )
     Mit  DELTA  = Kronecker  DELTA  (  Wenn V *   ALLE  Abbildungen enthalten soll, muss es stets möglich sein, ( 2b ) zu befriedigen. )   Und den Klammerausdruck auf der linken Seite von ( 2b )  bezeichnen wir sinniger Weise als " Bracket  "
   So weit leben V und V * erst  mal beziehungslos nebeneinander her. Die Erfindung des Skalarprodukts beruht aber gerade darauf,  dass du jedem  | x >  €  V   umkehrbar eindeutig einen Bildvektor  <  x  |  aus  V  *  zuordnest. Du begreifst das sofort, wenn du einmal bedenkst, dass das Skalarprodukt ein Vektorenpaar abbildet nach |R .
   Ich muss schon sagen;  dein Prof hat sich alle Mühe gegeben, diese Aufgabe gschlampert abzufassen - alle Achtung.  Das fängt bereits damit an,   dass er abstrakte Polynome mit x notiert;  p ( x )  .   Sowas vermeiden nun wirklich alle Textbücher;  richtig müsste es heißen
       p  €  |R  [  x  ]       (  3a  )
    Allen Falls  würde ich noch  p_x   tolerieren.
    <<   Wenn y0,...yn paarweise 
    <<   verschiedene reelle Zahlen sind
     WELCHE  Paare gehen miteinander ins Bett?  Bitte was soll das heißen ;  "  Paar weise verschieden "   ?   Ein Ausdruck aus der matematischen Rumpelkammer, als die Mengenlehre noch nicht erfunden war  ...   Professionell müsste da stehen:  Gegeben sei eine ( endliche )  Teilmenge von |R
      M  :=  {  x0  ,  ...  x_n  }      (  3b  )
    ( Der Mengenbegriff leistet sogar das Verlangte, dass hier keiner doppelt  gemoppelt wird. )
    Kommt  "  Weird  "  von  Verwirren?  Haach ich bin heute wieder ein Schelm ...    Mit zu seiner  "  Strategy of se weirding "   gehört nämlich, dass er die Elemente von ( 3b )  mit y kennzeichnet, so als handle es sich um Ordinatenpunkte.  Nein - gemeint sind die  ===>  Knoten eines Polynoms, daher unbedingt  "  x   "
   Kein Standardwerk  der nummerischen Matematik würde hier den Dualraum oder obigen Homomorphismus einführen -  weil es nämlich nix bringt.  Aber es ist nunmal, wie es ist. Dem Dualraum  V *  entspricht hier die Knotenmenge ( 3b )  ; analog   (  2b  )  fragen wir nach der Existenz von Polynomen 
     p_i  (  x_j  )  =  DELTA  (  i  ;  j  )        (  4  )
      (  4  )  ist glaub ich selbst erklärend.  Ich will mal gnädig sein;  diese Polynome bezeichne ich tatsächlich als ortogonal -   obgleich diese flapsige Sprechweise durchaus problematisch ist.  Aber so weit geht denn dein Prof doch nicht, ein Skalarprodukt zu stiften zwischen Polynomen einerseits und reellen Zahlen andererseits -  das ist dann doch zu abseitig.
    Solche Polynome existieren tatsächlich; Giuseppe Lodovico Spagettix Pomodoro Lagrangia da Torino hat sie explizit angegeben:
    
                     ( x - x0 ) .... ( x - x_i-1) ( x - x_i+1 ) ... ( x - x_n)
   p_i  :=   ----------------------------------------------------------------------
                 ( x_i - x0 ) .... ( x_i - x_i-1) ( x_i - x_i+1 ) ... ( x_i - x_n)
      (  5  )
   Es tut mir außerordentlich Leid, dass der Platz nicht mehr ausreicht.
   Nun weißt du, dass die Dimension von V gleich  (  n  +  1 ) beträgt.  Um als V  * durchzugehen,  müsste V * nach dem, was ich oben sagte, die selbe Dimension haben.  Da könnte ich ja her gehen und beliebig viele Stützstellen eingeben.
   Die Existenz   der Zerlegung   bzw.  Entwicklung hatten wir in ( 5 ) bewiesen;  das machst du übrigens ganz analog jedem anderen ortogonalen Funktionensystem.  Fehlt nur noch Eindeutigkeit. Sprich:  Wenn  das Interpolationspolynom in sämtlichen Knoten verschwindet, wäre es noch nicht das Nullpolynom.  Sowas ist an sich mit dem Prinzip hinter V * unvereinbar;   diejenige ( eindeutige ) Abbildung, die zu sämtlichen Fjn ktionen ortogonal ist, ist die Nullabbildung.
   Den Beweis findest du in allen einschlägigen Textbüchern; gesetzt den Fall, die   Polynome ( 5 ) wären linear abhängig.  Dann gäbe es eine nicht triviale Darstellung der Null.
   Ein Polynom, dessen Grad ( höchstens  )  n beträgt,  kann aber unmöglich ( n + 1 )  Nullstellen haben.