0 Daumen
502 Aufrufe

f(x)  = 1/2 e^x

Ermitteln Sie die Gleichung der Tangente t an den Graphen zu f im Punkt P (2 | f(2))

von

(Never mind).....................................................................

EDIT: Habe Gleichheitszeichen, Klammern, Grossbuchstaben, ... in der Frage ergänzt. Schau mal dieses Video, bevor du die nächste Frage eingibst:


Habe eine Antwort füt eine andere Frage geposted ^^" Man kann hier ja nichts löschen...

Kein Problem. Wenn du eine Antwort noch bearbeiten kannst, kannst du sie in einen Kommentar zur Frage umwandeln (Kreuzchen unterhalb des Eingabefeldes setzen). So bleibt die Frage bei den "offenen Fragen" sichtbar, bis eine Antwort vorhanden ist.

1 Antwort

0 Daumen

-  Berechen f(2), denn dann  hast du einen Punkt, den du später für die Tangente brauchst.

-  Bilde die erste Ableitung, denn das gibt dir an jeder beliebigen Stelle die Steigung an. Du setzt nun dort x=2 ein und hast die Steigung m im Punkt P.

-  y=t(x)=m*x+n ist die allgemeine Geradengleichung, hier als Tangentengleichung genannt, weil diese Gerade die Funktion f in einem Punkt P(2,f(2)) berührt. Du setzt nun den Punkt und die Steigung m in diese Gleichung ein und berechnest damit n, deny-Achsenabschnitt

-  Fertig ist deine Tangentengleichung.

von 12 k

f 2 wäre dann 1/2 e ^2 oder

Ja genau. Du kannst das auch noch etwas ,,verschönert aufschreiben''

$$ \frac{1}{2} e^2= \frac{e^2}{2} $$

hab 3,7 raus

Ja, das ist auch ok. Ist zwar gerundet, aber nahe dran. Am Besten immer so auf zwei Nachkommastellen runden, damit man noch recht nahe an der echten Zahl bleibt. Also

$$ \frac{e^2}{2} \approx 3,69 $$

die erste ableitung wäre indem fall kettenregel geht ja nicht

Du hast hier nur eine Konstante 1/2 als Vorfaktor. Une e^x abgeleitet, solltest du wissen, ist wieder e^x.

also bleibt es einfach so f  strich x       1/2 e ^x

Ja genau.

$$ f(x)=\frac{1}{2}e^x=f'(x)=\frac{1}{2}e^x $$

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community