0 Daumen
29 Aufrufe

a) Zeigen Sie über vollständige Induktion

det \( \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \)  = det(A) det(D)
mit A ∈ Rk×k, B ∈ Rk×(n−k) und D ∈ R(n−k)×(n−k).

Die Aufgabe schlägt vor, Laplacesche Entwiklungssatz zu verwenden (wie??)

b) Zeigen Sie
det \( \begin{pmatrix} A & B \\ C & D \end{pmatrix} \)  = det(A − BD−1C) det(D)
mit A ∈ Rk×k, B ∈ Rk×(n−k), C ∈ R(n−k)×k und D ∈ R(n−k)×(n−k).

 Die Inverse von
D−1 sei bekannt mit D−1D = Identität. Nutzen Sie ihr Ergebnis aus Aufgabenteil (a).


HINWEIS (b) (unklar und nicht sehr verständlich):
Überlegen Sie sich, welche Matrix von links multipliziert werden muss, um in einem Eintrag der Produktmatrix den Term A − BD−1C zu reproduzieren.

vor von

Bitte logge dich ein oder registriere dich, um die Frage zu beantworten.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...