0 Daumen
379 Aufrufe

Hallo zusammen,


Kann mir jemand erklären, wie ich eine Polynomfunktion anhand der 0 Stellen bestimmen kann?


Danke und LG!


Bildschirmfoto 2019-06-11 um 13.58.52.png

von

2 Antworten

+1 Daumen

die Funktion hat einfache Nullstellen bei x=1 und x=5 und eine dreifache Nullstelle bei x=3 (Sattelpunkt)

f(x) = a · (x-1) · (x-3)3 · (x-5)

f(4) = 3/2  →  a = -1/2    →  f(x) = -1/2 · (x-1) · (x-3)3 · (x-5)

Nachtrag:

Ausmultipliziert ergibt das   f(x) = - 1/2·x^5 + 15/2·x^4 - 43·x^3 + 117·x^2 - 297/2·x + 135/2

Gruß Wolfgang

von 83 k 🚀

Hallo Wolfgang, danke für deine Antwort.


Warum eine dreifache Nullstelle? Was bedeutet das? :-)


LG

Jede Nullstelle xo  bedeutet einen Linearfaktor  x-xo  in der Fakrtorzerlegung eines Polynoms. Jedes Polynom 5. Grades besitzt höchstens 5 Nullstellen und damit höchstens 5 solche Linearfaktoren.

Extremstellen sind dabei (mindestens) doppelte, Sattelstellen (mindestens) dreifache Nullstellen. 

Ein Sattelpunkt ist ein Wendepunkt mit waagrechter Tangente, hier S(3|0)

Etwas besser ist es vielleicht a mit dem Funktionswert an der Stelle x = 4.5 abzuschätzen. Bei a = -0.5 sieht man, dass dieser Punkt schlecht modelliert wird.

Ich empfehle zur Abschätzung immer möglichst große Funktionswerte zu nehmen.

0 Daumen

Verschiebe die y-Achse um 3 nach rechts:

blob.png

Dann ensteht der Ansatz f(x)=ax5+bx3+cx

mit den Nebenbedingungen f(2)=0; f(-2)=0 und f '(0)=0.

Bestimme dann a, b und c.

Schiebe wieder zurück.

von 66 k 🚀

Die Bedingungen f(2)=0 und f(-2)=0 sind äquivalent.

Ja, das stimmt. Dann vielleicht durch die Bedingung f ''(0)=0 ergänzen?

f''(0)=0 folgt bereits aus deinem Ansatz für f.

Aus f'(0) folgt c=0.

Sicher. Aber f''(0)=0 ist keine zusätzliche Bedingung, sondern folgt bereits aus dem Ansatz für f.

Dann muss man wohl ein Nullstelle hinzuhehmen. Die kann man aber nur ablesen (mit Unsicherheiten).

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...