Hallo, wie groß ist das Dreieck Alpha BAE Winkel also
Stellt sich zunächst mal die Frage: was ist ein "Dreieck Alpha BAE Winkel"? ;-)
Wir wissen nicht, ob es sich um eine Dreieck - bzw. seine Fläche - oder um einen Winkel handelt. Oder um was anderes.
Für die Fläche eines Dreiecks braucht man i.A. eine Grundseite und die Höhe, die senkrecht darauf steht. Die Länge der Seite BE ist bekannt. ∣BE∣=6.
Die Höhe AM lässt sich aus dem Dreieck △BMA berechnen (hellbraun). Dieses Dreieck ist rechtwinklig und folglich gilt nach Pythagoras∣AM∣2+∣BM∣2=∣AB∣2,∣BM∣=21∣BE∣=3⟹∣AM∣=∣AB∣2−∣BM∣2=52−32=4Also ist die Fläche F des Dreiecks △BEAF=21∣BE∣⋅∣AM∣=21⋅6⋅4=12
Winkel sind etwas schwieriger. Hier hilft wieder das rechtwinklige Dreieck △BMA. Sei der blau markierte Winkel α=∠BAE, dann gilt für den halben Winkel im Dreieck △BMAsin2α=∣AB∣∣BM∣= HypotenuseGegenkathete⟹α=2arcsin(∣AB∣∣BM∣)=2arcsin(53)≈73,7°Gruß Werner