Ich muss bei einer Aufgabe \( B_{\mathcal{B}}^{\mathcal{B}^{\prime}}, B_{\mathcal{B}^{\prime}}^{\mathcal{B}} \)  und \( M_{\mathcal{B}}^{\mathcal{B}}(T)  \) berechnen.
Gegeben sind:
B als Standardbasis für R³,
und \( \mathcal{B}^{\prime}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)\right\} \) und \( M_{\mathcal{B}^{\prime}}^{\mathcal{B}^{\prime}}(T)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \)
                                  1    0    0                            1       0       0                                        1    0    0
Ich habe für B B' B =   1    1    1   , für B B B' =   -1     1/2    1/2    und für M B B(T) =     0    0    1     raus.
                                   1    1   -1                            0     1/2   -1/2                                       0    1    0
Könnte mir vielleicht jemand von euch dieses Ergebnis bestätigen?