0 Daumen
36 Aufrufe

blob.png

Text erkannt:

3) \( m_{A} \) :

Kinematik:
\( \sum F_{x}=S_{1}-m g=m \ddot{x}_{1} \)
\( \ddot{x}_{1}=2 r \dot{p}_{1} \)
\( S_{1}=m g+m \ddot{x}_{1} \)
\( 4 r \ddot{p}_{1}=r \ddot{p}_{2} \Rightarrow \quad \frac{\ddot{p}_{2}}{4} \)
\( -2 r \ddot{p}_{2}=\ddot{x}_{4} \Rightarrow \ddot{p}_{2}=-\frac{\ddot{x}_{4}}{2 r} \)
\( m_{2} \) :
\( \begin{array}{rlrl} \sum M^{(r)} & =4 S_{2} r-2\left(S_{1}+2 m g\right) r=\left(m \cdot 4 r^{2}+8 m r^{2}\right) \ddot{p}_{1} & \\ & =2 S_{2}-S_{1}-2 m g=6 m r \ddot{p}_{1} & S_{2} & =\frac{3}{4} m r \ddot{p}_{2}+\frac{1}{2} m g+\frac{1}{2} m r \ddot{p}_{2}+m g \\ & S_{2}=3 m r \ddot{p}_{1}+\frac{1}{2} S_{1}+m g & & =\frac{5}{4} m r \ddot{p}_{2}+\frac{3}{2} m g \end{array} \)
\( m_{3} \) :
\( S_{3}=\frac{3}{4} m r \ddot{p}_{2}+\frac{3}{2} m g \)
\( \begin{array}{c} \sum M^{(A)}=S_{2} r-S_{3} r=\frac{1}{2} m r^{2} \ddot{p}_{2} \\ S_{3}=S_{2}-\frac{1}{2} m r \ddot{p}_{2} \end{array} \)
\( \begin{array}{l} m \ddot{x}_{4}=m g \sin (\alpha)+\frac{3}{2} m g-\frac{3}{8} m \ddot{x} \\ \ddot{x}_{4}=g \sin (\alpha)+\frac{3}{2} g-\frac{3}{8} \ddot{x} \\ \frac{11}{8} \ddot{x}_{4}=g \sin (\alpha)+\frac{3}{2} g \end{array} \)
\( m_{4} \) :
\( \ddot{x}_{4}=\frac{8}{11} g \sin (\alpha)+\frac{12}{11} g \)
\( \sum F_{x}=m g \sin (\alpha)-S_{3}=m \ddot{x}_{4} \)

Avatar vor von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community