0 Daumen
786 Aufrufe

k: x2+y2-50=0, g:X=(1/-2)+t*(2/1)

 

von
So was Ähnliches findest du in der Suche am ehesten über die Stichwörter: Kreis und Kreisgleichung.

Du kannst für x = 1 + 2t und für y = -2 + t einsetzen in k.

Und dann die gefundenen t in g. Probier das schon mal.

1 Antwort

0 Daumen
[x, y] = [1, -2] + t * [2, 1] = [2t + 1, t - 2]

Das können wir jetzt für x und y in die Kreisgleichung einsetzen

x^2 + y^2 - 50 = 0
(2t + 1)^2 + (t - 2)^2 - 50 = 0
4t^2 + 4t + 1 + t^2 - 4t + 4 - 50 = 0
5t^2 - 45 = 0
t^2 - 9 = 0
t^2 = 9

t1 = -3 und t2 = 3

Das setzten wir in die Gerade ein und erhalten den Schnittpunkt bzw. die Schnittpunkte

[2t + 1, t - 2] = [2*(-3) + 1, -3 - 2] = [-5, -5]

[2t + 1, t - 2] = [2*3 + 1, 3 - 2] = [7, 1]
von 420 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community