+1 Punkt
114 Aufrufe

N' abend,

habe ziemliche Schwierigkeiten bei der kompletten Aufgabe Nr. 7 (c) auf dem Bild.

Das Ermitteln der Stammfunktion und das folgende Einsetzen ist kein Problem, doch was genau mache ich danach. Was ich ebenfalls weiß ist, dass ich mit der pq-Formel oder der ax^3+bx^2+cx+d=0 Formel auf die richtigen Ergebnisse komme. Was aber setze ich hier ein? 


c)  F(x) = - 2/3 x^3 + x^2; I = [c;2]

- 5/3 = (- 2/3 * 2^3 + 2^2) - (- 2/3 * c^3 + c^2)

vereinfacht: c^3 - c^2 + 1


Nun weiß ich nicht mehr weiter, wenn es denn so richtig ist.


-5/3 = ∫_(c)^2 (2x -2x^2) dx

Danke :-)

Bild Mathematik

von

Kontrolliere

"vereinfacht: c3 - c2 + 1" nochmals genau.

Es sollte doch eine Gleichung stehen bleiben und dich sollte primär eine Zahl c kleiner als 2 interessieren.

2 Antworten

+2 Daumen
 
Beste Antwort

- 5/3 = (- 2/3 * 23 + 22) - (- 2/3 * c3 + c2)

vereinfacht: 2*c3 -3* c2 + 1 = 0

hat die Lösungen c=1  kannst du raten und dann mit Polynomdiv.  c=-1/2

von 152 k
+1 Punkt


$$-\frac{5}{3}=-\frac{2}{3}8+4+\frac{2}{3}c^3-c^2 \\ \Rightarrow -5=-2\cdot 8+3\cdot 4+2c^3-3c^2 \\ \Rightarrow -5=-16+12+2c^3-3c^2 \\ \Rightarrow 2c^3-3c^2+1=0$$ 

$$f(c)=2c^3-3c^2+1$$

Potentielle Nullstellen (die Teiler von 1) : ±1 


$$f(1)=2-3+1=-1+1=0 \\ f(-1)=-2-3+1=-4$$ 


Also c=1.  


von 6,7 k  –  ❤ Bedanken per Paypal

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...