0 Daumen
684 Aufrufe

komme bei folgender Aufgabe auf keinen Lösungsansatz:

F -1 von (x) = Integral-(zeichen) von x über -1 (1-t2) dt

Ich hoffe ihr wisst was gemeint ist :)

EDIT gemeint ist F1(x)=x1(1t2)dt\text{EDIT gemeint ist }\color{blue}{F_{-1}(x)=\int_x^{-1}(1-t^2)\,\mathrm dt}\,


Danke und Gruß

Avatar von
Nee, wissen wir nicht...     

Meinst du vielleicht F1(x)=x1(1t2)dt?\text{Meinst du vielleicht }\color{blue}{F_{-1}(x)=\int_x^{-1}(1-t^2)\,\mathrm dt}\,?

Japp, genau so ;)

1 Antwort

0 Daumen
F1(x)=x1(1t2)dt=t13t3x1{F_{-1}(x)=\int_x^{-1}(1-t^2)\,\mathrm dt}=t-\frac13t^3\,\Bigg\vert_x^{-1}=((1)13(1)3)(x13x3)=13x3x23.\quad=\left((-1)-\frac13\cdot(-1)^3\right)-\left(x-\frac13x^3\right)=\frac13x^3-x-\frac23.
Avatar von

Ein anderes Problem?

Stell deine Frage