Funktion & Ableitungen
f(x) = (x + 2)·(x - 2)·(x2 - 1) = x4 - 5·x2 + 4
f'(x) = 4·x3 - 10·x
f''(x) = 12·x2 - 10
Symmetrie
Achsensymmetrie, da nur gerade Potenzen von x vorhanden sind.
Verhalten im Unendlichen
lim (x → - ∞) f(x) = ∞
lim (x → ∞) f(x) = ∞
y-Achsenabschnitt f(0)
f(0) = 4
Nullstellen f(x) = 0
(x + 2)·(x - 2)·(x2 - 1) = 0
x = ± 1 ; x = ± 2
Extrempunkte f'(x) = 0
f'(x) = 4·x3 - 10·x = 2·x·(2·x2 - 5)
x = 0 ; x = ± √2.5 = ± 1.581
f(0) = 4 --> HP(0 | 4)
f(± 1.581) = - 2.25 --> TP(± 1.581 | - 2.25)
Wendepunkte f''(x) = 0
f''(x) = 12·x2 - 10 = 0
x = ± √(5/6) = ± 0.913
f(± 0.913) = 19/36 = 0.528 --> WP(± 0.913 | 0.528)