Man betrachte zwei 4-seitige, gezinkte Würfel. Beide haben die Ziffern 1,2,3,4 aufgedruckt!

+2 Daumen
77 Aufrufe

Hallo, 

kann mir jemand hier bei dieser Aufgabe bitte helfen? 

Man betrachte zwei 4-seitige, gezinkte Würfel. Beide haben die Ziffern 1, 2, 3, 4 aufgedruckt. Die Wahrscheinlichkeiten der Augenzahlen sind den folgenden Tabellen zu entnehmen:
Würfel A:

x 1 2 3 4
PA (x) 0.31 0.26 0.15 0.28

Würfel B:

x 1 2 3 4
PB (x) 0.35 0.20 0.38 0.07

 Mit welcher Wahrscheinlichkeit gewinnt Würfel A, wenn beide Würfel einmal geworfen werden und die höhere Augenzahl gewinnt? 

Vielen Dank im Voraus!

Gefragt 9 Jan von bi5399

Wäre das vielleicht eine Idee für den Anfang?

I:$$ \frac {26+15+28}{35} $$
II:$$ \frac {15+28}{35+20} $$
III:$$ \frac {28}{35+20+38} $$

2 Antworten

0 Daumen

P(A gewinnt): = 0.26·0.35 + 0.15·(0.35 + 0.2) + 0.28·(0.35 + 0.2 + 0.38) = 0.4339 = 43.39%

Beantwortet 12 Jan von Der_Mathecoach Experte CCI
0 Daumen

Hallo,

ein vierseitiger "Würfel" ist kein Würfel, sondern ein Tetraeder.

Demnächst behauptet irgendein *****, das Stöckchen für Hunde sei auch ein "Würfel", schließlich wird es ja geworfen.

Grüße,

M.B.

Beantwortet 12 Jan von MatheMB Experte IV

Das wäre auch vollkommen korrekt!

Vielen Dank für die vielen Lösungsansätze. 

Ich habe nun das richtige Ergebnis mit der Laplace-Wahrscheinlichkeit heraus bekommen. 

(1/1) (1/2) (1/3) (1/4)

(2/1) (2/2) (2/3) (2/4)

(3/1) (3/2) (3/3) (3/4)

(4/1) (4/2) (4/3) (4/4)

Die markierten Kombination sind die Fälle, wo der Würfel A und die höhere Augenzahl gewinnt. 

Da beide Würfel einmal geworfen werden, müssen die Wahrscheinlichkeiten der Tabellen einfach zusammen multipliziert und die Ergebnisse dann addiert werden. 

= (0,13 * 0,27) + (0,43 * 0,27) + (0,43 *0,10) + (0,23 * 0,27) + (0,23 * 0,10) + (0,23 * 0,32) = 35,29%

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und ohne Registrierung

x
Made by Memelpower
...