0 Daumen
74 Aufrufe

Sei z :R → R auf [−1/4, 3/4] definiert durch

z(x) := {4x        für x ∈ [−1/4, 1/4),
             2−4x   für x ∈ [1/4, 3/4],

und dann periodisch fortgesetzt durch z(x +1) = z(x).
Ferner sei f : R → R definiert durch
f (x) := {z(1/x)  für x ≠ 0,
            0         für x = 0.
(a) Zeichnen Sie ein möglichst „genaues“ Bild des Graphen von f im Intervall [−5, 5].
(b) Zeigen Sie, dass f bei x = 0 oszilliert, d.h. in jeder δ-Umgebung Uδ(0) nimmt f jeden
Wert aus dem Intervall [−1, 1] unendlich oft an.

Danke im Voraus! :)

vor von

Hallo

 hast du wenigstens z(x) schon mal gezeichnet? daraus dann f(x) wenigstens an einigen Punkten abgelesen?

Was kannst du nicht? Gruß lul

Bitte logge dich ein oder registriere dich, um die Frage zu beantworten.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...