0 Daumen
537 Aufrufe

Aufgabe: ERLÖSFUNKTION

Stellen Sie mithilfe der Daten eine quadratische Erlösfunktion auf, welche die Erlössituation des Unternehmen beschreibt.

x          6               7             8          10

E(x)    672          686         672         560

Problem/Ansatz: ERLÖSFUNKTION

Hallo Ihr Lieben, ich habe wirklich keine Ahnung wie ich das rechnen soll.


Ganz lieben Dank im voraus

Avatar von

2 Antworten

0 Daumen
 
Beste Antwort

Aloha :)

Eine quadratische Funktion hat die Form:E(x)=ax2+bx+cE(x)=ax^2+bx+cWir setzen die 4 Punkte ein:

672=36a2+6b+c686=49a2+7b+c672=64a2+8b+c560=100a2+10b+c\begin{array}{r}672 &=& 36a^2 &+& 6b &+& c\\686 &=& 49a^2 &+& 7b &+& c\\672 &=& 64a^2 &+& 8b &+& c\\560 &=& 100a^2 &+& 10b &+& c\end{array}Wir haben 4 Gleichungen und 3 Unbekannte, also eine Gleichung zu viel. Wir wählen daher die ersten 3 Gleichungen zur Berechnung der Unbekannten aus und prüfen anschließend, ob auch die vierte Gleichung erfüllt wird.

abc=Operation36616724971686Zeile 16481672Zeile 236616726Zeile 2131014Zeile 3151014420158820028 : (2)1510141510144201588+42Zeile 21001415101415Zeile 2001010014010196\begin{array}{r}a & b & c & = & \text{Operation}\\\hline36 & 6 & 1 & 672 & \\49 & 7 & 1 & 686 &-\text{Zeile } 1\\64 & 8 & 1 & 672 & -\text{Zeile }2\\\hline36 & 6 & 1 & 672 & -6\cdot\text{Zeile }2\\13 & 1 & 0 & 14 & -\text{Zeile }3\\15 & 1 & 0 & -14 & \\\hline -42 & 0 & 1 & 588 & \\-2 & 0 & 0 & 28 & :(-2) \\15 & 1 & 0 & -14 & \\15 & 1 & 0 & -14 & \\\hline -42 & 0 & 1 & 588 & +42\cdot\text{Zeile }2 \\1 & 0 & 0 & -14 & \\15 & 1 & 0 & -14 & -15\cdot\text{Zeile }2\\\hline 0 & 0 & 1 & 0 & \\1 & 0 & 0 & -14 & \\0 & 1 & 0 & 196 &\end{array}Wir haben also folgende Funktion gefunden:E(x)=14x2+196xE(x)=-14x^2+196xAuch die vierte Bedinung wird von dieser Funktion erfüllt.

Plotlux öffnen

f1(x) = -14x2+196xP(6|672)P(7|686)P(8|672)P(10|560)Zoom: x(0…16) y(0…700)


Avatar von 153 k 🚀
+1 Daumen

Entweder mit dem Ansatz E(x)=ax2+bx+c und Einsetzen von drei Punkten;

oder mit quadratischer Regression.

Man kann es auch mit dem Ansatz E(x)=a(x-7)2+686 und dem Punkt (8|672) machen. Dann erhält an a=-14.

Avatar von 124 k 🚀

Man kann es auch mit dem Ansatz E(x) = a(x - 7)2 + 686 und dem Punkt (8 | 672) machen. Dann erhält an a = -14.

Ansich kann man den Öffnungsfaktor gleich aus der Differenz der Funktionswerte der Stellen 7 und 8 bestimmen, wenn man weiß dass an der Stelle 7 der Scheitelpunkt ist.

a = f(8) - f(7) = 672 - 686 = -14

Aber die Scheitelpunktform sollte die erste Wahl sein, wenn man schon direkt den Scheitelpunkt aus der Wertetabelle ablesen kann.

Ein anderes Problem?

Stell deine Frage