0 Daumen
416 Aufrufe

Aufgabe:

Vereinfachen: \( S(\frac{1-(1+i)^{t}}{1-(1+i)}) \)


Problem/Ansatz:

\( S(\frac{(1+i)^{t}-1}{i}) \), so steht es in meinen Lösungen und ich weiß nicht wie diese Vereinfachung im Zähler zustande kommt.

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

$$\frac{1-(1+i)^t}{1-(1+i)}=\frac{1-(1+i)^t}{1-1-i}=\frac{1-(1+i)^t}{-i}=(-1)\cdot\frac{1-(1+i)^t}{i}$$$$=\frac{(-1)(1-(1+i)^t)}{i}=\frac{-1+(1+i)^t}{i}=\frac{(1+i)^t-1}{i}$$

Avatar von 153 k 🚀

Warum nicht

\(=\frac{(-1)(1-(1+i)^t)}{i}=i-i(1+i)^t\)

Es sollte der Rechenweg vom ursprünglichen Ausdruck zur angegebenen Lösung gezeigt werden.

Danke, als ich es eben nochmal anclickte sah ich es auch.

Ein anderes Problem?

Stell deine Frage